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ABSTRACT
The development of new nuclear reactors continues to be high risk during the

construction phase, with many programs exceeding their budget by 2–3×. This
work entails an investigation of sensors that can be utilized during the
construction of microreactors and their incorporation into a digital twin
supporting the construction process. These sensors can be used to monitor
construction progress, inform of variances from the expected design, and verify
that the reactor is being built to the planned building information management
model. This will ensure reactor equipment and components accurately interact
through welding or additive manufacturing technologies. This study illustrates
the importance of the digital engineering architecture for microreactor
deployment.
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Digital Engineering Sensor Architectures for Future
Microreactor Builds

1. THE IMPERATIVE FOR DIGITAL TWIN IN MICROREACTOR
CONSTRUCTION

The development of new nuclear reactors continues to be high risk during the construction phase.
More than 53% of typical construction projects are behind schedule, and more than 66% suffer from cost
overruns (Bevan and Steve 2016). The main technical and project management risks during the
construction phase stem partly from an inability to accurately capture the construction progress, including
delays in putting together critical structural elements of the reactor facility, deviations from the approved
plan and engineering drawings (i.e., failed verification), and errors accumulated during the design process
(i.e., failed validation). Digital engineering is meant to address these issues by establishing an
authoritative source of truth and to support the continuous monitoring of the construction process,
operation of the reactor, and the decommissioning and decontamination of that reactor. The objective of
this study is to emphasize the importance of digital engineering for microreactor construction.

The construction process can be captured in real time if various sensors monitoring the construction
progress and current (even if intermediate) state of the containment structure are incorporated into the
design and are installed while the containment is being built. The benefit of this approach is that a digital
twin of a building emerges ex processus the construction, allowing for a dynamic capture of it.

This scope would look into sensors that can be utilized during the construction of microreactors and
their incorporation into a digital twin of the construction process. These sensors can be used to monitor
the construction progress, discover variances from the expected design, and verify that the reactor is built
to the planned building information management (BIM) model. This will ensure reactor equipment and
components accurately merge through welding and additive manufacturing technologies.

1.1 Current State of the Art: BIM
With an ever-increasing amount of visual data available on construction sites due to advances in

computer vision and 3D imaging technologies, there have been dramatic advances in model-based
construction progress detection leveraging as-built modeling techniques. Some of these techniques use
image-based point clouds. Other techniques use laser-scanned point clouds.

Image-based point clouds are usually obtained by flying a camera-equipped drone along the same
predefined path and taking a stream of images of the construction site. Nowadays, it is common to capture
hundreds of images of a jobsite on a daily basis. (Ham et al. 2016; Han and Golparvar-Fard 2017). Laser-
based point clouds are collected using light detection and ranging (LIDAR). Laser-scanned methods are
based on geometry recognition and generally provide more accurate and denser point clouds of the
structures of interest than the image-based methods. The downside, however, is that the LIDAR is usually
significantly heavier than cameras, ~1.5kg versus ~50g. This increased weight puts an extra burden on a
drone’s battery, compromising its fly time and thus its range. Therefore, most laser scan jobs are
performed using surface-based devices, often moved across the jobsite manually or using terrestrial
vehicles. This approach requires a manual intervention to define a path and is hindered by unexpected
obstacles appearing along the path.
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The data collected using either of the methods (as-built model) is then correlated automatically with
the BIM information (as-planned model). Both image-based and laser-based methods deliver accurate
information about the geometry of the structure; however, the image-based method can also reveal
textures of different BIM elements. The image-based 3D reconstruction process consists of structure from
motion for sparse reconstruction (Wu 2017) and multiview stereo for dense reconstruction (Goesele et al.
2007). Images are the inputs to this pipeline of structure from motion to multiview stereo and camera
poses (intrinsic and extrinsic camera parameters) and point clouds are the outputs. On the other hand, the
3D laser scanners typically used in construction sites (e.g., time-of-flight terrestrial laser scanners) are
used to generate 3D point clouds with commercially available software. Corresponding features (e.g.,
corners) between point clouds and BIMs are manually picked and similarity transformations are applied
to register the as-built and as-planned models and create an integrated planning model. The data collected
at this step is then filtered based on the geometry available from the BIM (e.g., images taken by drones
tend to capture background objects that do not belong to the structure of interest). The next step,
appearance-based reasoning, classifies material classes of the detected BIM elements based on color and
texture. More details on these approaches can be found in (Han, Degol, and Golparvar-Fard 2018).

In many cases, laser-based data collection is still conducted manually. To address this limitation, the
SLAM (Simultaneous Localization and Mapping) technique has been developed by (Engel et al. 2014 and
others). SLAM is an algorithmic attempt to address the problem of building a map of an unknown
environment while navigating the environment using the map. Mapping the spatial information of the
environment is done on-the-fly with no prior knowledge of the robot’s location. The built map is
subsequently used by the robot for navigation. Most external SLAM applications use Global Positioning
System (GPS) shortcutting to acquisition location information. Of course, poor satellite signal coverage
for indoor environments limits the GPS accuracy. 3D LIDAR scanners have limited efficiency in large
scale environments; there will be areas lacking in features discernible by a laser, like open hallways or
glass-walled corridors. Processing time has also historically limited the speed at which 3D LIDAR point
clouds can be registered. Some of these limitations are addressed in (Asadi et al. 2019). This paper
describes a method that performs an automatic registration of image sequences to BIM in real time,
leveraging BIM’s geometry and computer vision techniques, such as camera localization and mapping
and perspective detection.

1.2 Current State of the Art: Internet of Things
Another aspect of digitalization of construction is use of the internet of things (IoT). Recent

tremendous progress in semiconductors and communication enables real-time data collection and
aggregation from thousands of sources. IoT enabling technologies include advanced sensing, pattern
identification and recognition, cloud computing, communication technologies, and networks.

The potential of connecting BIM and IoT-based data sources is a relatively new development. As a
generalization, BIM and IoT data offer complementary views of the project that together supplement the
limitations of each. BIM data contains periodically refreshed geometric or materials data from the entire
construction site, whereas sensors are usually placed relatively sparse (as compared to the point cloud
used for BIM), but they deliver information inaccessible for BIM scanners. Thus, IoT data enhances BIM
geometric and assets information set by providing a real time and recordable status from the actual
operations in construction and operations. The information sampled from sensors is highly variable but
includes positioning information, physical measurements, weather, etc. Positional information is provided
via either an automated position determination (e.g., GPS) or manually via assigning a position to a
sensor within the BIM.

Sensor data is generally organized as time series data streams of individual sensor point samples over
time, frequently with some higher-level organization into equipment, asset, etc. Both BIM and IoT data
may be accessed through similar mechanisms, including the manual interfaces of proprietary systems,
Application Programming Interfaces associated with these applications, potential database connections to
the systems, and export via open standards. This database allows to maintain one of the core features of
BIM—a single source of truth that combines data from both BIM and IoT worlds.
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2. BIM AND IOT IN NUCLEAR INDUSTRY
Nuclear industry requirements are far more strict than general construction. The nuclear

instrumentation and control systems are designed to have multiple redundancies and provide accurate
measurements throughout the entire reactor lifetime while operating in a harsh environment (temperature,
pressure, radiation, aggressive media, etc.). Reactor vessels, confinement, and other structural support
elements of the reactor assembly are critical to ensure the integrity and containment of nuclear fuel and
fission products. Constant in-situ monitoring of the “health” of the reactor core is performed by the
instrumentation and control system (ICS), usually including thermocouples and flow meters, which are air
monitor sensors to detect radionuclides. However, historically, little attention has been given to the initial
health and cursus morbi of the containment structure.

Here, we will discuss the mesoscale concept that combines BIM (macroscale) and IoT (microscale)
approaches to assess the as-built and as-evolved state of the containment structure. This will ensure that
reactor equipment and components accurately merge together through welding and via additive
manufacturing technologies and that this merger remains constant throughout the expected lifetime of the
reactor.

2.1 Laser Displacement Sensors
Laser displacement sensors (LDS) can be employed to assess the reactor vessel geometry at both the

manufacturing location as well as at the installation location. Laser displacement measurement systems
provide non‑contact, high-speed, and high-precision measurement. Unlike the cameras, LDS do not
compromise accuracy in complex surfaces and geometries, where the picture may be distorted by
shadowing. LDS have many applications in building technology; a method to measure building vibration
has been proposed in (Bougard and Ellis 2000). The requirements and specifications of the LDS vary
depending on the application. For example, a commercial 2D/3D laser scanner equipped with a blue laser
can have Z (axial) resolution as low as 3m at a (lateral) field of view (FoV) of 3–4 mm or up to 500m
at a FoV 500–800 mm. (AccuProfile 820 series). A 3D scan is possible when a 2D sensor moves along
the Y axis across the entire surface.

2.2 Thermal Cameras
Structural deviations from the ideal model can be broken down into several categories: poor welding

or casting quality, poor material quality, and incorrect operation regimes. Poor welding or casting quality
can be detected immediately whether at the place of manufacturing or at the place of installation. This is
done via a scan using a hand-held x-ray apparatus to detect cavities in weldment seams, and an LDS scan
to detect part deformation. Scan results are then compared with the computer-aided design (CAD) model
of the weldment. Poor material quality can manifest itself in a slow deformation under constant stress
(creep). Creep is accelerated under elevated temperatures caused by tougher than normal or incorrect
operating regimes. Therefore, it is important to monitor the temperature distribution on the outer surface
of the secondary containment structure (SCS). Commercially available thermal cameras provide real-time
images with 640 × 480 resolution (307,200 pixels), 25 × 19 degree angular FoV, and thermal sensitivity
less than 100mK (FLIR T640). Thermal cameras are equipped with lenses of different focal distances;
therefore, the lateral FoV depends on the focal distance, feasible distance between the SCS, and the
instrument. It is likely that a thermal camera must be put on a moving gantry, similarly to the LDS. It is
important to notice that both the LDS and thermal camera are reflection-based instruments—that is, the
detector can be placed in proximity to the source, unlike an x-ray, which is transmission based, and hence
the detector should be placed on the opposite side of the source.

2.3 Reactor Instrumentation and Control System (ICS)
Whereas the thermal cameras can provide information about the temperature filed on the outside of

the reactor vessel, the reactor’s core ICS can deliver data from the inside of the SCS. This data is usually
sparse and limited to the number of thermocouples installed within the SCS volume; however, it can
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detect early variations before their detrimental effects propagate to the SCS weldment and compromise
the structural integrity of the confinement.

3. APPLICATION TO MICROREACTORS
In this report, we will focus on applications geared towards assessing the state of a microreactor.

Microreactors are compact reactors that will be small enough to transport by truck. Microreactors could
help solve energy challenges in a number of areas and normally produce less than 20–30 MWth. These
reactors have a lower overnight capital cost due to their factory production, decreased construction
complexity, one-time certification, and economies of scale. In this report, we will use the Microreactor
Applications Research, Validation, and Evaluation (MARVEL) project under the DOE-NE Microreactor
Program and the National Reactor Innovation Center as an example of how BIM and IoT can be applied
to a new reactor design. MARVEL is a 100 kWth (~20 kWe) Stirling Engine microreactor, which makes
it similar albeit smaller in scale to other microreactors, such as Oklo’s Aurora (1.5 MWe) or the NuGen
Engine (1–3 MWe). However, the approach outlined here is fully scalable to even bigger projects, such as
TerraPower’s Natrium (345 MWe) or X-Energy’s Xe-100 (80–320 MWe).

MARVEL will have liquid sodium potassium eutectic as the primary coolant, with temperatures
around 500°C. The reactor control systems will consist of four independent vertical control drums and a
central shutdown rod. The microreactor is expected to become operational in 2024. (Arafat 2020)
describes the MARVEL project goals and the microreactor design. The external design of MARVEL is
presented in Figure 1.

The outer shell of a microreactor vessel consists of a welded SCS resting on the reactor support
frame, immersed in the reactor pit. The axial size of the SCS is approximately 3 meters, radial size—1.5
m.

Figure 1. MARVEL reactor structure.
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3.1 Sensor Instrumentation of a Microreactor
The goal of this application is to construct a mesoscale real-time digital twin (DT) of MARVEL using

the data coming from an array of sensors. Since, as described above, the FoV of the sensors is limited, it
is important to utilize spatial scanners to cover the entire surface of the SCS. The objective is to capture
the lateral deviation of the SCS vessel from the ideal CAD model and to monitor how these dimensions
change throughout the lifetime of the reactor. Since the deviations could be in the microns order of
magnitude, two types of gantry’s geometry can satisfy this request: orthogonal gantries attached to the
walls of the reactor pit or cylindrical gantries (annular-axial or tomographic) surrounding the reactor
vessel. The orthogonal gantry has the advantage of being simple; however, a major drawback is that the
working distance of cameras or an LDS changes with the axis’ lateral position, and thus, it compromises
resolution depending on the viewing angle. The annular-axial gantry (see Figure 2) would be free from
these defects. There are many numerically effective reflective tomography approaches to reconstruct a 3D
model of a shell from the (, z) coordinates and signal intensity, see (Kadu, Mansour, and Boufounos
2020).

Figure 2. Annular-axial (”tomographic”) gantry and the reactor instrumentation concept.

The result of such a reconstruction will be a DT of the SCS depicting temperature and displacement
(strain) gradients over the SCS. Existing CAD models augmented with the DT data allow for back-
calculating the total von Mises stress and comparing it with the yield stress of the SCS material to predict
the rupture of the SCS.

Stainless Steel - Grade 316, commonly used in reactor confinement construction, has a thermal
expansion coefficient of 15 × 10-6/K. The radial thermal expansion of a cylindrical structure is given by:
d1 = d0 (T α + 1). Therefore, a camera with a thermal sensitivity of 100 mK will be capable of detecting
a ~2.5 m variance in the SCS diameter.

This data acquisition process should not be limited to the SCS weldment. If the spatial geometry
permits, the power generating system and heat rejection system’s external shells should also be monitored
to prevent failures due to overheating.
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3.2 Data Flow and Analysis
With all of the advantages that the LDS and thermal camera monitoring systems deliver, they have a

major drawback—non-real-time data collection, that is the scan process must be initiated automatically or
manually. This is a common problem for all BIM data acquisition systems. Every time the CAD data is
refined by the LDS scans to account for growing imperfections arising from manufacturing or operation
defects, it forms a point cloud, a representation method common in BIM.

Here we are proposing to augment high-fidelity, high-resolution, high-coverage BIM-type data with
sparse, but real-time, IoT data. The reactor core instrumentation includes a variety of sensors, such as the
primary coolant flow meters, primary coolant level probes, primary coolant leak detectors, guard vessel
pressure sensor, downcomer thermocouples, reflector thermocouples, intermediate heat exchanger
thermocouples, lower plenum thermocouples, upper plenum thermocouples, neutron detectors
thermocouples, power range neutron flux detector, source range neutron flux detector, and pressure
sensors in the plenum between the primary vessel and the SCS. Data from the sensors, scattered around
the core vessel of the reactor, is fed into the centralized database, such as DeepLynx, developed by Idaho
National Laboratory (INL); processed to the same data format; aggregated by the systems type (nuclear
fuel system, primary cooling system, secondary cooling system, power generating system, etc.); and
consolidated into the DT of the reactor as a whole. The position of all IoT sensors remains constant and
known throughout the reactor’s life, and thus, they form a point cloud too, albeit a sparse one. The sparse
point cloud of the IoT data cannot be used for a direct prediction of the reactor’s state but rather as a
verification instrument of the DT model. The data flow for this approach is depicted in Figure 3.

Figure 3. Data flow chart.

The DT of the reactor will be constructed using the simulation code developed at INL: MAMOTH for
reactor multiphysics, including structural deformation, and GRIZZLY for reactor materials degradation.
The DT will encompass the reactor as a whole, including the fuel, cooling medium, cover gas, and SCS.
The DT will be periodically refined using both the data from the regular CT scans, as well as using the
real-time data from the IoT sensors. The model discrepancy data will be propagated to the operator’s
console or potentially an artificial intelligence based decision-making system for analysis. The DT will
produce a model of the internal reactor parameters based on available core instrumentation data. These
parameters will serve as the input data to generate expected readings of the IoT sensors. It may be
necessary to employ a classical machine learning divide et impera approach. Some sensor data will be
used to provide input for the DT to predict the output of the other group of sensors. Next, we will
compare DT prediction and actual sensor readings. This comparison will provide the quality score of the
DT model.
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The desired output of the entire analysis, is the prediction of undesired reactor operation regimes,
including those that lead to a potential compromising of the SCS’ integrity and structural stability
assessment resulting from materials fatigue, creep, or poor craftmanship.

4. CONCLUSION
In this study, we proposed a novel microreactor instrumentation concept to assess the integrity of the

reactor vessel. The concept focuses on the synergistic utilization of the reactor’s ICS sensors, external
LDS and thermal cameras, and a DT to deliver information to the operator about the general health of the
reactor and particularly about structural integrity of the secondary containment system.
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Appendix A

Feedback Questionnaire
 Do you currently employ any digital engineering techniques?

 If yes:
- What are they?
- How successful? (maybe some anecdotal evidence of cost and time saving)

 Did the white paper provide you enough insight about what digital engineering can do for you? If not,
what could be further added?

 Would you be willing to explore potential applications of digital engineering to facilitate your small
modular reactor design?

 Do you see the value in constructing digital twins of the reactors?

 If yes:
- What critical parameters do they represent?
- What are other important aspects that are omitted in your current DT implementation?

 How does the current implantation of reactor ICS address the need for continuous monitoring of the
reactor’s critical parameters?

 What is missing in the ICS in terms of sensor equipment?

 How is the sensor data being processed currently?
- Are there any artificial intelligence or machine learning techniques currently employed for sensor

data analysis?
- If not – would you be interested in exploring the benefits these techniques can provide?

 Are there any artificial intelligence or machine learning techniques currently employed for reactor
control and decision making?
- Is it an option from the regulatory standpoint?

 Would you be willing to collaborate with INL on developing methods to construct DT’s of the
reactor?

N.B.: Governmental entities (such as National Laboratories) are not allowed to enter into any sort of
NDA. Therefore, your response to this questionnaire may be published alongside with this report. Please
use your discretion in sharing any potentially sensitive information.
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